

Série 5 : Exercices sur les généralités sur les fonctions

Exercice 1:

Étudier la parité de la fonction f si :

a)
$$f_1(x)=1-x^2$$

b)
$$f_2(x) = x - 1$$

d)
$$f_4(x) = x(x^2 - 1)$$
 ; e) $f_5(x) = |x| - 2$; f) $f_6(x) = \frac{x}{\sqrt{2}}$;

e)
$$f_5(x)=|x|-2$$

f)
$$f_6(x) = \frac{x}{\sqrt{2}}$$

g)
$$f_7(x) = x^3 + x$$

Exercice 2:

Le plan est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

Démontrer dans chaque cas que (Δ) est un axe de symétrie de la courbe de f.

a)
$$f_1(x)=x^2-4x-1$$
; $(\Delta): x=2$

b)
$$f_2(x) = -x^2 - 2x + 1$$
; (Δ) : $x = -1$

c)
$$f_3(x)=|x+2|$$
; $(\Delta): x=-2$

d)
$$f_4(x) = \frac{1}{(x-1)^2}$$
; (Δ) : $x=1$

Exercice 3:

Le plan est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

Montrer dans chaque cas que Ω est centre de symétrie de la courbe de f.

a)
$$f_1(x)=(x+1)^2+1$$
; $\Omega(-1;1)$

b)
$$f_2(x) = \frac{1}{x-1}$$
; $\Omega(1;0)$

c)
$$f_3(x) = \frac{2x}{x-1}$$
; $\Omega(1;-2)$

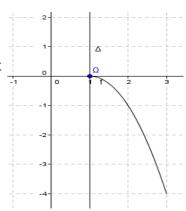
d)
$$f_3(x) = \frac{x^2}{x-1}$$
; $\Omega(1;2)$

Exercice 4:

La courbe ci-contre est une partie de la représentation d'une fonction f ayant pour ensemble de définition [-1; 3].

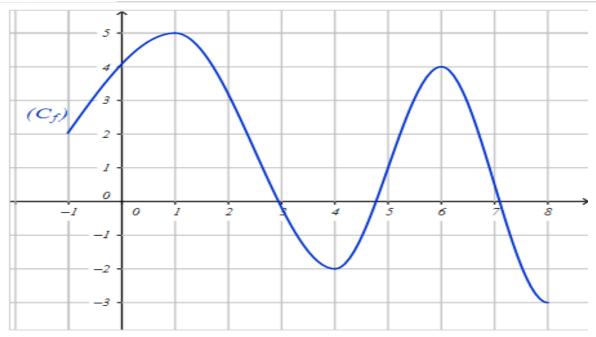
Dans chaque cas, compléter la courbe :

- 1) la droite est un axe de symétrie.
- 2) Le point Ω est un centre de symétrie.



Exercice 5:

Soit la fonction f définie sur l'intervalle [-1 ; 8] dont la courbe représentative est tracée ci-dessous :



- 1. Dresser le tableau de variation de f.
- 2. Déterminer les maximums et les minimums relatifs de f.
- 3. Pour chacune des questions ci-dessous, indiquer si l'affirmation est juste ou fausse. Justifier.
 - a) Pour tout $x \in [-1, 8]$, $f(x) \ge -3$;
 - b) Pour tout $x \in [-1, 8]$, $f(x) \le -3$;
 - c) Pour tout $x \in [-1; 4]$, $f(x) \le 0$;
 - d) Pour tout $x \in [-1, 2]$, $f(x) \ge 0$.