SECRÉTARIAT GÉNÉRAL

SESSION 2020

DIRECTION GÉNÉRALE DE L'ENSEIGNEMENT SUPÉRIEUR

DIRECTION DE L'ENSEIGNEMENT SUPÉRIEUR

Service d'Appui au Baccalauréat

Série : C

Epreuve de

: SCIENCES PHYSIQUES

Durée

: 04 heures

Code matière : 011

Coefficient

: 5

<----->

N.B: - Machine à calculer non programmable autorisée

- Les cinq exercices et le problème sont obligatoires.

CHIMIE ORGANIQUE (3 points)

L'hydrolyse d'un ester E, de masse molaire M= 116g.mol⁻¹, conduit à un acide carboxylique B et un alcool A à chaine carbonée ramifiée et optiquement actif. L'oxydation ménagée de l'alcool A donne un composé organique qui agit sur la liqueur de Fehling.

1. Déterminer la formule semi-développée de l'alcool A et celle de l'acide B. Donner les noms de A et B. (1 pt)

2. a) Quelle est la formule semi-développée de l'ester E et son nom ?

(0,5 pt)

b) Ecrire l'équation traduisant l'hydrolyse de l'ester E.

(0,5 pt)

c) Représenter en perspective les deux énantiomères de A.

(0,25 pt)

3. Le rendement de l'hydrolyse est de 34%. Déterminer la masse de l'alcool produit pour 5,8g d'ester utilisé.

(0,75 pt)

On donne: $M(C) = 12g.mol^{-1}$, $M(H) = 1g.mol^{-1}$, $M(O) = 16g.mol^{-1}$.

CHIMIE GENERALE (3 points)

La température des liquides est de 25°C. Le pK_A du couple $R - NH_3^+ / R - NH_2^-$ est égale à 10,8.

- 1. Une solution aqueuse d'amine $R NH_2$ a un pH = 11. Calculer les concentrations molaires des différentes espèces chimiques (autre que l'eau) présentes dans la solution.
 - (1 pt)
- 2. On mélange un volume V_B de la solution d'amine de concentration molaire $C_B = 10^{-1}$ mol.l' et un volume V_A d'une solution de chlorure d'ammonium (NH₄⁺, Cl') de concentration molaire C_A telle que $C_A = C_B$.

En admettant que $[H_30^+] \ll [OH^-] \ll [Cl^-]$:

a) Montrer que :
$$\frac{\left[R - NH_2\right]}{\left[R - NH_3^+\right]} = \frac{V_B}{V_A}$$

(1,5 pts)

b) Calculer V_A et V_B sachant que le volume du mélange est égal à 70 mL.

(0,5 pt)

PHYSIQUE NUCLEAIRE (2 points)

L'Uranium 238 est l'origine d'une famille radioactive. Les désintégrations successives s'accompagnent d'émission de particules α et de particules β . La durée de vie des noyaux intermédiaires est suffisamment courte pour que l'on puisse négliger dans les produits. On assimile l'ensemble à une réaction unique :

$$^{238}_{92}U \rightarrow ^{206}_{82}Pb + x(^{4}_{2}He) + y(^{0}_{-1}e)$$

1. Calculer les coefficients x et y.

(0,5 pt)

2. Un échantillon de minerai ne contient que No noyaux d'Uranium 238 à la date t=0s.

A la date t_1 , l'échantillon contient 1g d'Uranium 238 (${}^{238}_{92}U$) et 10mg de Plomb 206 (${}^{206}_{82}Pb$).

La période radioactive de l'Uranium 238 est T =4,5. 109 années. Calculer :

a) Le nombre moyen de noyaux No d'Uranium 238 dans l'échantillon initial. (0,5 pt)

b) L'activité A_o de cet échantillon. (0,5 pt)

c) La date t₁. (0,5 pt)

On donne: $M(\frac{238}{92}U) = 238 \text{ g.mol}^{-1}; M(\frac{206}{82}Pb) = 206 \text{ g.mol}^{-1}$

Nombre d'Avogadro : N_A = 6.10²³ mol⁻¹

1 an = 365 jours.

OPTIQUE GEOMETRIQUE (2 points)

On dispose de 2 lentilles minces : une lentille L_1 de distance focale $f_1' = 6$ cm, de centre optique O_1 et une lentille L_2 de distance focale f_2' de centre optique O_2 . Les axes optiques des deux lentilles sont confondus.

1. Le système accolé, formé par les deux lentilles (L_1, L_2) de centre optique O, donne d'un objet réel AB une image réelle renversée A_1B_1 de même grandeur que AB. La distance entre l'objet et l'image est égale à 48cm. Calculer :

a) la vergence C du système accolé. (0,5 pt)

b) la distance focale f_2 ' de la lentille L_2 . (0,5 pt)

2. Les deux lentilles sont maintenant disposées de façon que leurs centres optiques soient distants de

21 cm sur un même axe principal. On place l'objet AB, de 2 cm de hauteur, à 12 cm devant L1.

Construire l'image A'B' de cet objet à travers le système de deux lentilles. (1 pt)

<u>Echelles</u>: - 1cm représente 3cm sur l'axe optique.

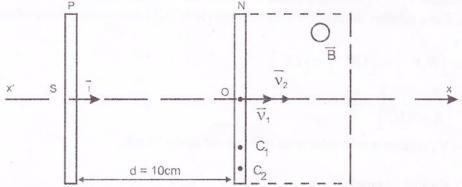
- L'objet est représenté en vraie grandeur.

ELECTROMAGNETISME (4 points)

Les deux parties A et B sont indépendantes.

PARTIE A (2 points)

Deux ions $^{107}Ag^+$ et $^{109}Ag^+$ de masse respectives m_1 et m_2 sont accélérés, dans le vide, par une tension positive $U_{PN}=V_P-V_N=6.10^4V$ entre deux électrodes (P) et (N) parallèles verticales. Les deux électrodes sont distantes de d=10cm. On néglige le poids des particules devant les forces électrostatique et magnétique.



- 1. On admettra que les ions traversent la plaque (P) au point S avec une vitesse pratiquement nulle.
 - a) Préciser le sens et la direction du vecteur champ électrique \overrightarrow{E} et du vecteur force électrique \overrightarrow{F}_e . (0,25 pt)
 - b) Les deux ions $^{107}Ag^+$ et $^{109}Ag^+$, arrivent au point O de la plaque N avec des vitesses respectives $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$.

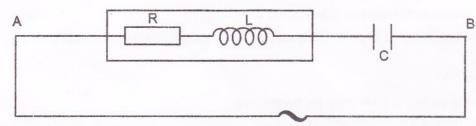
Montrer que :
$$\frac{v_1}{v_2} = \sqrt{\frac{m_2}{m_1}}$$
. (0,75 pt)

- -2. Les ions pénètrent ensuite dans une région où règne un champ magnétique uniforme \overrightarrow{B} perpendiculaire à leurs vitesses $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$.
 - a) Déterminer le sens et la direction du vecteur champ magnétique \overline{B} pour que les deux ions parviennent au collecteur C_1 et C_2 . (0,25 pt)
 - b) Montrer que le mouvement des ions est circulaire uniforme. (0,5 pt)
 - c) Calculer le rapport des deux rayons $(\frac{r_1}{r_2})$ des trajectoires à 10^{-2} près. (0,25 pt)

On donne: $m_1 = 107$ u et $m_2 = 109$ u avec u: unité de masse atomique; 1u = 1,66. 10^{-27} kg

PARTIE B (2 points)

Un circuit comprend en série une bobine résistive de résistance interne $R=100~\Omega$ et d'inductance L=500~mH, un condensateur de capacité $C=2\mu\text{F}$. Il est alimenté par un générateur de tension sinusoïdale de valeur efficace U et de pulsation ω réglable.



Pour une valeur $\omega_0 = 1000 \text{ rad.s}^{-1} \text{ de } \omega$.

- 1. Construire le diagramme de Fresnel relatif à l'impédance de ce circuit.

 Que peut-on en conclure ?
- 2. La tension entre les bornes A et B est: $u(t) = 12\sqrt{2}\sin\omega_0 t$ (u en (V) et t en (s)).

 Donner l'expression de l'intensité instantanée i(t) traversant le circuit. (1 pt)

MECANIQUE (6 points)

Les parties A et B sont indépendantes. Dans tous les problèmes, on prendra $g = 10 \text{m.s}^{-2}$

PARTIE A (3 points)

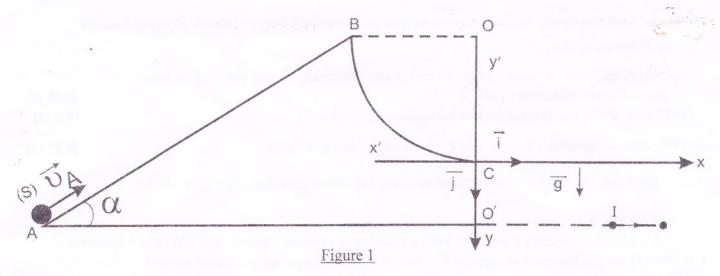
On considère une piste ABC contenu dans un plan vertical et dont les caractéristiques sont les suivantes:

- AB est un plan incliné de longueur l = 3,6m et faisant un angle α avec l'horizontal contenant le point A.
- BC est un quart de cercle de centre O et de rayon r = 1m. (Figure 1)
- 1. Un solide ponctuel (S) de masse m=150g, lancé avec une vitesse initiale $v_A = 6 \text{m.s}^{-1}$, glisse sans frottement jusqu'au point B.

Calculer la valeur de l'angle α, sachant que la vitesse au point B soit nulle. (0,5 pt)

- 2. Le solide (S) continue son mouvement en traversant le quart de cercle BC avec des forces de frottement équivalent à une force \vec{f} de même direction, mais de sens opposé au vecteur vitesse, d'intensité constante f. Il arrive au point C avec une vitesse $v_C = 4 \text{ m.s}^{-1}$.
 - a) Calculer f. (0,5 pt)
 - b) Calculer l'intensité de la résultante \overline{R}_C , réaction de la piste sur le solide (S), au point C. (1 pt)

(1 pt)



3. Le solide (S) quitte la piste au point C avec la vitesse $\overline{v_c}$.

a) Etablir l'équation cartésienne de la trajectoire dans le repère (C, \vec{i}, \vec{j}) . (0,5 pt)

b) Calculer les coordonnées du point d'impact I du solide (S) sur le plan horizontal (AO'). (0,5 pt)

PARTIE B (3 points)

Dans tout le problème on néglige les frottements.

Une tige rigide AB de longueur L et de masse négligeable est fixée sur le diamètre d'un cerceau de centre I, de rayon r = 40cm tel que L=2r. La masse du cerceau est M=400g. Sur la tige, en un point J tel que IJ = x, on place un solide ponctuel gde masse m telle que M=2m. Le système (S) {tige + cerceau + masse} est maintenu en équilibre par l'intermédiaire d'un ressort spiral de constante de rappel C = 0,8 N.m.rad⁻¹, et pouvant tourner autour d'un axe fixe (Δ) passant par O, symétrique de J par rapport à I. (Figure 2)

1. a) Soit G le centre d'inertie du système (S) {tige + cerceau + masse}. Exprimer OG en fonction de x. (0,5 pt)

b) Exprimer le moment d'inertie J_{Δ} du système par rapport à l'axe (Δ) en fonction de m, r et x. (0,5 pt)

2. On écarte le système d'un angle θ_0 =0,1rad à partir de sa position d'équilibre verticale et on l'abandonne sans vitesse initiale à l'instant t=0s.

a) Montrer que la pulsation ω_0 du mouvement est égale à. $\sqrt{\frac{4mgx+C}{2m(r^2+3x^2)}}$. (1,25 pts)

b) Ecrire l'équation horaire régissant le mouvement du système (S) pour x = r. (0,75 pt)

