

Séquence 2 : Positions relatives entre droites et cercles

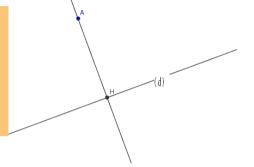
1. Distance d'un point à une droite

Le plan est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) . Soit (D) une droite, A un point du plan et H le pied de la perpendiculaire à (D) passant par A (le projeté orthogonal de A sur (D)).

La distance de A à (D) notée d (A, (D)) est la distance AH.

Si (D) a pour équation ax +by + c = 0 et A (x_0 ; y_0), alors la distance d (A, (D)) est donnée par la formule :

$$d(A,(D)) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}$$



Exemple:

Déterminer les distances de O et A (-2, 3) à la droite (D) d'équation : 4x+3y+9 =0.

$$d(O,(D)) = \frac{|4 \times 0 + 3 \times 0 + 9|}{\sqrt{4^2 + 3^2}} = \frac{9}{\sqrt{(25)}} , d(O,(D)) = \frac{9}{5} .$$

$$d(A,(D)) = \frac{|4x(-2)+3x3+9|}{\sqrt{4^2+3^2}} = \frac{10}{\sqrt{25}}, d(A,(D)) = 2.$$

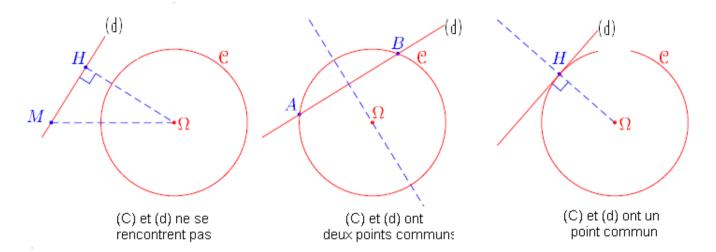
2. Position relative d'une droite et d'un cercle

2.1 Théorème

Soit une droite (d) et un cercle (C) de centre Ω et de rayon r.

- Si d (Ω , (d)) > 0, (d) et (C) ne se rencontrent pas (pas de point commun);
- Si d (Ω, (d)) < 0, (d) et (C) ont exactement deux points communs ;
- Si d (Ω, (d)) = 0, (d) et (C) ont un seul point commun.

Dans le dernier cas, on dit que la droite est tangente au cercle.



Démonstration :

Soit H le projeté orthogonal de Ω sur (d). Un point M de (d) est sur (C) si $\Omega M^2 = r^2$. Par le théorème de Pythagore, on a : $\Omega M^2 = \Omega H^2 + HM^2 = d$ (Ω , (d))² + HM².

$$M \in (C)$$
 si $\Omega M^2 = r^2$. Donc, $r^2 = d(\Omega, (d))^2 + HM^2$. Ainsi, $HM^2 = r^2 - d(\Omega, (d))^2$.

Il existe zéro, deux ou une solution selon que le second membre est strictement négatif, strictement positif ou nul.

2.2 Étude algébrique

Pour déterminer algébriquement les coordonnées des points d'intersection, on résout le système :

équation du cercle (C) équation de la droite (d)

2.3 Équation de la tangente à un cercle

Soit (C) un cercle de centre Ω , de rayon r, et A (x_0 ; y_0) un point de ce cercle.

La **tangente** en A à ce cercle est l'ensemble des points M (x ; y) vérifiant \overrightarrow{AM} . $\overrightarrow{\Omega M}$ = 0 .

3. Position relative de deux cercles

3.1 Théorème

Soient deux cercles (C) et (C') de centres et rayon respectifs Ω et Ω ', r et r'. Posons d = $\Omega\Omega$ '. Les différents cas sont les suivants :

• Si d < |r-r'|, (C) et (C') n'ont aucun point commun et l'un d'eux est intérieur à l'autre.

- Si d=|r-r'|, lorsque $r \neq r'$, (C) et (C') ont un point commun où ils ont une tangente commune. Les cercles sont dits **tangents intérieurement**; lorsque r=r', ils sont **confondus**.
- Si |r-r'| < d < r+r', les deux cercles ont deux points communs distincts.
- Si d=r+r', les deux cercles ont un seul point commun en lequel ils ont une tangente commune. Les cercles sont dits tangents extérieurement.
- Si d>r+r', les deux cercles n'ont aucun point commun et chacun est extérieur à l'autre.

3.2 Différentes positions

