

Équation du troisième degré

1. Définition

Un équation du troisième degré est une équation de la forme $ax^3+bx^2+cx+d=0$ où a, b, c et d sont des nombres réels, avec $a\neq 0$

Un réel α est une solution de l'équation si $a\alpha^3 + b\alpha^2 + c\alpha + d = 0$

On dit aussi que α est racine du polynôme P de degré 3, défini par $P(x) = ax^3 + bx^2 + cx + d$

2. Factorisation

Soit $P(x)=ax^3+bx^2+cx+d$.

Pour un réel α , $P(\alpha) = a\alpha^3 + b\alpha^2 + c\alpha + d$

On a alors $P(x)-P(\alpha)=a(x^3-\alpha^3)+b(x^2-\alpha^2)+c(x-\alpha)$

Puisque $(x^3-\alpha^3)=(x-\alpha)(x^2+\alpha x+\alpha^2)$ et $(x^2-\alpha^2)=(x-\alpha)(x+\alpha)$, on a

$$P(x)-P(\alpha) = a(x-\alpha)(x^2+\alpha x+\alpha^2)+b(x-\alpha)(x+\alpha)+c(x-\alpha)$$
$$= (x-\alpha)(a(x^2+\alpha x+\alpha^2)+b(x+\alpha)+c)$$

$$P(x)-P(\alpha)=(x-\alpha)(ax^2+(a\alpha+b)x+(\alpha^2+b\alpha+c))$$

 $P(x)-P(\alpha)$ est de la forme $P(x)-P(\alpha)=(x-\alpha)(p\,x^2+q\,x+r)$ où p, q et r sont des nombres réels

On a donc quels que soit les réels x et α , $P(x)=(x-\alpha)(px^2+qx+r)+P(\alpha)$

Ainsi si α est racine de P, $P(\alpha)=0$, et $P(x)=(x-\alpha)(px^2+qx+r)$

Théorème

Soit P un polynôme de degré trois .

Un réel α est une racine de P si et seulement s'il existe trois réels p, q et r tels que $P(x)=(x-\alpha)(p\,x^2+q\,x+r)$

3. Résolution

Soit $P(x)=ax^3+bx^2+cx+d$ et α une racine de P.

On cherche les réels p, q et r tels que $P(x)=(x-\alpha)(px^2+qx+r)$ par la méthode des coefficients indéterminés ou par division euclidienne

On a P(x)=0 si et seulement si $x-\alpha=0$ ou $px^2+qx+r=0$.

Pour pour achever la résolution, il reste à résoudre l'équation $px^2+qx+r=0$

Exemple

Résoudre l'équation $x^3-4x^2+x+2=0$ sachant que 1 est racine .

Réponse :

1 est racine donc, il existe des réels p, q et r tels que $x^3-4x^2+x+2=(x-1)(px^2+qx+r)$ En développant le second membre de l'égalité, on a :

$$x^3-4x^2+x+2=px^3+(q-p)x^2+(r-q)x-r$$
.

Par identification des coefficients des termes de même degré, on a $\begin{cases} p=1\\ q-p=-4\\ r-q=1\\ -r=2 \end{cases},$

ce qui donne
$$\begin{cases} p\!=\!1 \\ q\!=\!-3 & \text{et} \quad x^3\!-\!4\,x^2\!+\!x\!+\!2\!=\!(x\!-\!1)(x^2\!-\!3\,x\!-\!2) \\ r\!=\!-2 & \end{cases}$$

$$x^3-4x^2+x+2=0$$
 si et seulement si $(x-1)(x^2-3x-2)=0$,

donc si et seulement si x-1=0 ou $x^2-3x-2=0$

Résolvons la dernière équation $x^2-3x-2=0$.

$$\Delta = (-3)^2 - 4(1)(-2) = 17 > 0$$

On a donc deux racines distinctes $x' = \frac{3 - \sqrt{17}}{2}$ et $x' = \frac{3 + \sqrt{17}}{2}$.

Finalement l'ensemble des solutions est $S = \left\{ \frac{3 - \sqrt{17}}{2}; 1; \frac{3 + \sqrt{17}}{2} \right\}$