

TP : Contrôle de transformations mettant en jeu les réactions d'estérification et d'hydrolyse des esters

URL source du document: http://www.guimberteau.fr.st/

Etude préliminaire

ObjectifsVérifier expérimentalement les principales caractéristiques des transformations mettant en jeu les réactions d'estérification et d'hydrolyse des esters, à savoir :

- · les transformations associées à ces réactions sont lentes ;
- les transformations associées à ces réactions ne sont pas totales ;
- les transformations sont plus rapides en présence d'acide sulfurique concentré ;
- la présence d'acide sulfurique concentré ne modifie pas l'état d'équilibre final du système ;
- les transformations sont plus rapides à température plus élevée ;
- l'état d'équilibre peut être modifié en utilisant un excès de l'un des réactif

Prérequis:

- La famille des esters et leurs utilisations au quotidien.
- Présentation des réactions d'estérification et d'hydrolyse des esters (écriture des réactions, aspect historique, application pratique).
- 1- Etude préliminaireAyant à votre disposition le tableau ci-dessous donnant la composition de différents mélanges préparés ainsi que les propriétés physico-chimiques des espèces présentes, proposez des protocoles permettant de vérifier les caractéristiques, mentionnées dans les objectifs, des transformations mettant en jeu des réactions d'estérification et d'hydrolyse des esters.

Compositions des différents mélanges préparés :

Numéro	Mélanges initiaux			Conditions expérimentales	
1	Éthanol 1 mol	Acide éthanoïque 1 mol		Quelques mois à température ambiante	
2	Éthanol 1 mol	Acide éthanoïque 1 mol	Acide sulfurique concentré 1 mL	1 semaine à température ambiante	
3	Éthanol 1 mol	Acide éthanoïque 1 mol		Préparation en début de séance et à température ambiante Titrage à 0 h*, 0,5 h et 1,0 h	
4	Éthanol 1 mol	Acide éthanoïque 1 mol	Acide sulfurique concentré 1 mL	Préparation en début de séance et à température ambiante Titrage à 0 h*, 0,5 h et 1,0 h	
5	Éthanol 1,33 mol	Acide éthanoïque 0,67 mol	Acide sulfurique concentré 1 mL	1 semaine à température ambiante	
6	Éthanol 1 mol	Acide éthanoïque 1 mol	Acide sulfurique concentré 1 mL	Préparation en début de séance, reflux pendant 20 min et titrage à 0,5 h	
7	Ethanoate d'éthyle 1 mol	Eau 1 mol	Acide sulfurique concentré 1 mL	1 semaine à température ambiante	
8		Eau 115 mL	Acide sulfurique concentré 1 mL	Indifférent	

Date de version: Auteur: 1/3

* Le titrage est réalisé le plus rapidement possible après le mélange.

Espèce chimique	Masse molaire (g.mol·1)	Densité par rapport à l'eau à 20 °C	∂ _{éb} (°C)	Concentration molaire (mol.L-1)
Acide éthanoïque	60	1,05	118	
Éthanol	46	0,79	78	
Acide sulfurique concentré				18
Éthanoate d'éthyle	88	0,90	78	
eau	18	1,00	100	

Données physico-chimiques

2. Exploitation

- Écrire les équations des réactions mises en jeu dans les différents mélanges sachant que l'acide sulfurique n'est jamais consommé.
- Montrer que les mélanges numérotés de 1 à 8 ont le même volume total à moins de 1 % près.
- D'après les conditions opératoires, indiquer dans quel mélange la quantité d'acide éthanoïque restant est maximale. Calculer le volume de solution d'hydroxyde de sodium de concentration molaire 1,00 mol.L⁻¹ nécessaire au titrage de l'acide éthanoïque dans 2,00 mL de ce mélange.
- Sachant que, dans les mélanges où coexistent l'acide sulfurique et l'acide éthanoïque, ces deux acides ont intégralement réagi avec l'hydroxyde de sodium lors du virage de la phénolphtaléine, expliquer comment il est possible de déterminer la quantité d'acide éthanoïque restant ou formé dans un mélange.
- Comment obtenir, à l'aide des mesures, le taux d'avancement des différentes transformations ?
- Expliciter quels mélanges il convient d'analyser pour vérifier que :
- · les transformations associées à ces réactions sont lentes ;
- · les transformations associées à ces réactions ne sont pas totales ;
- · les transformations sont plus rapides en présence d'acide sulfurique concentré ;
- · la présence d'acide sulfurique ne modifie pas l'état d'équilibre final du système ;
- · les transformations sont plus rapides à température plus élevée ;
- · l'état d'équilibre peut être modifié en utilisant un excès de l'un des réactifs

Matériel et produits

- · Des feutres à verre
- · Certains mélanges à titrer sont déjà préparés,
- une pipette jaugée de 2,00 L sert à en effectuer le prélèvement
- · Montage à reflux
- · Acide éthanoïque
- Éthanol absolu
- Éthanoate d'éthyle
- · Acide sulfurique concentré
- 1 L de solution d'hydroxyde de sodium de concentration molaire 1,00 mol.L⁻¹
- · Par binôme
- Burette graduée de 25 mL
- · Agitateur magnétique et un turbulent
- Quatre bechers
- Solution d'hydroxyde de sodium de concentration molaire 1,00 mol.L⁻¹
- Phénolphtaléïne

Date de version: Auteur: 2/3

1. Précautions opératoires

- Tous les titrages se font sur un prélèvement refroidi d'un volume V_0 = 2,00 mL de mélange, avec une solution d'hydroxyde de sodium de concentration molaire c = 1,00 mol.L⁻¹ en présence de phénolphtaléine comme indicateur coloré.
- Ne pas ajouter d'eau ni de glace au prélèvement.
- Chaque binôme réalise pour commencer le titrage du mélange n° 8.
- Les titrages des autres mélanges sont répartis entre les différents binômes.
- Les binômes étudiant les mélanges 3 et 4 les réalisent au début de la séance, les titrent immédiatement, puis après une demi-heure et une heure

2. Exploitation

• Compléter le tableau de résultats suivant :

Numéro	Mélanges initiaux			Volume de soude		Taux d'avancement
1	Éthanol 1 mol	Acide éthanoïque 1 mol				
2	Éthanol 1 mol	Acide éthanoïque 1 mol	Acide sulfurique concentré 1 mL			
3	Éthanol 1 mol	Acide éthanoïque 1 mol		0 h 0,5 h 1 h		
4	Éthanol 1 mol	Acide éthanoïque 1 mol	Acide sulfurique concentré 1 mL	0 h 0,5 h 1 h		
5	Éthanol 1,33 mol	Acide éthanoïque 0,67 mol	Acide sulfurique concentré 1 mL			
6	Éthanol 1 mol	Acide éthanoïque 1 mol	Acide sulfurique concentré 1 mL	Préparation en début de séance, reflux pendant 20 min et titrage à 0,5 h		
7	Ethanoate d'éthyle 1 mol	Eau 1 mol	Acide sulfurique concentré 1 mL			
8		Eau 115 mL	Acide sulfurique concentré 1 mL			

- Montrer que la transformation peut parfois être contrôlée par l'élimination d'un produit, mais que cela nécessite des conditions particulières sur les températures d'ébullition.
- Récapituler les différents types de contrôle mis en œuvre pour améliorer la synthèse d'un ester, l'utilisation d'une espèce plus réactive sera vue dans le cas de la synthèse de l'aspirine.

Date de version: Auteur: 3/3