

Suites numériques réelles : série n°1

Exercice 1

 (u_n) est une suite arithmétique de raison r et de premier terme u_0

- 1°) a) Exprimer u_1 , u_2 , u_3 et u_4 en fonction de u_0 et r
 - b) Exprimer u_n en fonction de u_0 , n et r
 - c) Exprimer u_p en fonction de u_0 , p et r
 - d) Exprimer u_n en fonction de u_p , (n-p) et r

Exercice 2

 u_p est un terme quelconque de la suite arithmétique (u_n) de raison $r \in IR$

1) Effectuer l'addition suivante : ($p < n \in IN$)

$$\sum_{k=p}^{n} u_k = u_{p+\dots+u_n} = (n-p+1)u_p + r(1+2+\dots+(n-p))$$

2) Puis compléter la démonstration suivante :

$$\sum_{k=p}^{n} u_k = (n-p+1)u_p + r \frac{(n-p)(\dots 2)}{2}$$

$$= (n-p+1) \left[\frac{2u_p + (n-p)r}{2} \right]$$

$$= (n-p+1) \left[\frac{u_p + (u_p + (n-p)r)}{2} \right]$$

$$\sum_{k=p}^{n} u_k = u_p + \dots + u_n = (n-p+1) \frac{\dots + \dots}{2}$$

Et en particulier :

$$\sum_{k=0}^{n} u_k = u_0 + \dots + u_n = \dots$$

Exercice 3

 (u_n) est une suite géométrique de raison q et de premier terme u_0

a) Exprimer u_1 , u_2 , u_3 et u_4 en fonction de q et u_0

b) Exprimer u_n en fonction de q, n et u_0

c) Exprimer u_p en fonction de q, p et u_0

d) Exprimer u_n en fonction de ${\it q}$, $({\it n-p})$ et u_p

Exercice 4

 u_p est un terme quelconque de la suite géométrique (u_n) de raison $q \in IR$

1) Effectuer l'addition suivante : $(p < n \in IN)$

$$u_{p} = u_{p}$$

$$u_{p+1} = q \cdot u_{p}$$

$$u_{p+2} = q^{2} \cdot u_{p}$$

$$u_{p+3} = q^{3} \cdot u_{p}$$

$$\vdots \qquad \vdots$$

$$u_{n} = u_{p+(n-p)} = q^{(n-p)} \cdot u_{p}$$

$$\sum_{k=p}^{n} u_k = u_{p+\dots+u_n} = u_p(1+q+q^2+\dots+q^{n-p})$$

2) En déduire l'expression de
$$\sum_{k=p}^{n} u_{p} = u_{p} + ... + u_{n} = u_{p} \frac{....}{1-q}$$

En particulier

$$\sum_{k=0}^{n} u_{p} = u_{0} + \dots + u_{n} = u_{0} \frac{\dots}{1 - q}$$

Exercice 5

On considère la suite (u_n) définie par $u_n = 5 - 2n$ pour tout $n \in IN$

- 1°) Calculer u_0 , u_1 et u_2
- 2°) Démontrer que (u_n) est une suite arithmétique dont on précisera la raison
- Calculer la somme $S = u_0 + u_1 + \cdots + u_{100}$ 3°)

Exercice 6

On considère la suite (u_n) définie par $u_n = (n+1)^2 - n^2$ pour tout $n \in IN$

- 1°) Calculer u_0 , u_1 et u_2
- 2°) La suite (u_n) est-elle arithmétique ? Si oui, préciser sa raison
- Calculer la somme $S = 1 + 3 + 5 + \dots + 195 + 197 + 199$ 3°)

Exercice 7

- Montrer que la suite (u_n) définie par $u_n = 3 \cdot \frac{2^n}{5^{n+1}}$ est une suite géométrique de raison q1°) à déterminer.
- Montrer que la suite (v_n) définie par $v_n = 2 \cdot \frac{3^{n+1}}{\sqrt{n-2}}$ est une suite géométrique de raison q2°) à déterminer.

Exercice 8

La suite (u_n) est arithmétique de raison r = 8. On sait que $u_{100} = 650$ Que vaut u_0 ?

Exercice 9

Dans chacun des cas suivants, Calculer la raison r et le premier terme u_0 de la suite arithmétique (u_n)

1°)
$$u_1 = 2$$
 et $u_3 = 10$

2°)
$$u_2 + u_3 + u_4 = 9$$
 et $u_6 = 9$

3°)
$$u_1 - u_3 = 4$$
 et $u_2 + u_4 = -10$

Exercice 22

 (u_n) est une suite géométrique à termes positifs vérifiant : $\begin{cases} u_2 \cdot u_4 = 1 \\ u_2 + u_4 = \frac{5}{2} \end{cases}$

- 1°) Trouver les termes u_2 et u_4 de cette suite
- 2°) Donner la raison q de cette suite ainsi que son premier terme u_0
- 3°) Donner l'expression explicite de u_n