

Exemple de fonction avec valeur absolue

Soit f la fonction définie par $f(x)=|x^2-4|$

- $D_f = R$
- f est paire, $D_e = [0; +\infty[$
- $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to 0} f(x) = 4$
- <u>Dérivabilité</u>:

Х	0	2	+ ∞
x²- 4		φ	+
x²- 4	4 - x ²	φ	x²- 4

Sur [0; 2[,
$$f(x)=-x^2+4$$

Elle est dérivable sur cet intervalle et f'(x)=-2x

Sur] 2;
$$+\infty$$
[f est dérivable et f'(x)=2x

$$\frac{\text{En 2:}}{\lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2}} = \lim_{x \to 2^{+}} \frac{x^{2} - 4}{x - 2} = \lim_{x \to 2^{+}} (x + 2) = 4$$

$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{++}} \frac{-x^{2} + 4}{x - 2} = \lim_{x \to 2^{-}} -(x + 2) = -4$$

f n'est pas dérivable en 2 et la courbe représentative de f admet en ce point deux demi tangentes à gauche et à droite de pentes respectives - 4 et 4

X	0 2	2 +∞
f'(x)	-2x	2x
f'(x)	4	+4 +
f(x)	4 0 +∞	

