

Étude de quelques fonctions polynômes

 $\underline{\mathbf{1}^{\text{er}} \text{ exemple : } f(x) = x^2}$

•
$$D_f = R =]-\infty; +\infty[$$

• Parité:
$$f(-x)=(-x)^2=x^2=f(x)$$
 f est paire $D_e=[0;+\infty[$

• limites
$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

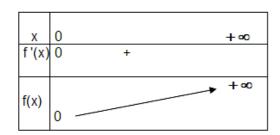
• Dérivée
$$f'(x)=2x$$

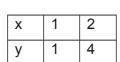
• Tableau de variation :

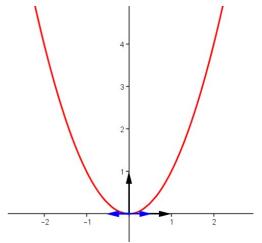
$$f'(x)=0 \Leftrightarrow 2x=0 \Leftrightarrow x=0$$

 $f(x)=x^2$

f'(0) = 0, donc on a une tangente horizontale en (0,0)







 2^{e} exemple: $f(x) = -x^{3} + 3x + 1$

•
$$D_f = R$$

• Parité :

$$f(-x) = +x^3 - 3x + 1$$

-f(x) = +x^3 - 3x - 1

- Donc f n'est ni paire ni impaire
- · Limites:

$$\lim_{x \to -\infty} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$f'(x) = -3x^2 + 3$$

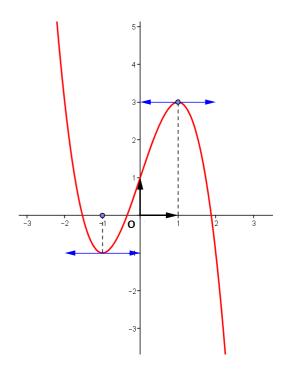
• Tableau de variation :

$$f'(x)=0 \Leftrightarrow x=1 \text{ ou } x=-1$$

Х	- ∞	-1		1	+ ∞
f'(x)	-	ф	+	ф	· -
f(x)	+∞	1 -1 /		√ ³	

-2	-1	1	2
3	-1	3	-1

Courbe:



 3^{e} exemple : $f(x) = x^{4} - 2x^{2} + 1$

- Df = R
- Parité, $f\left(x\right){=}x^4{-}2\,x^2{+}1 \ \ \text{donc f est paire}$ $D_e = [0;+\infty[$
- Limites $\lim_{x \to 0} f(x) = 1$; $\lim_{x \to +\infty} f(x) = +\infty$
- Dérivée

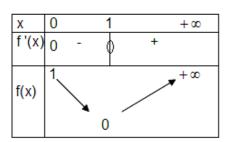
$$f'(x)=4x^3-4x$$

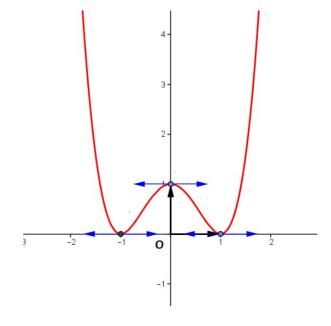
-1

• Tableau de variation :

$$f'(x) = 0$$
 si et seulement $4x(x^2-1)=0$ donc si $x=0$ ou $x=1$ ou $x=-1$

La courbe admet des tangentes horizontales aux points d'abscisses 0 et 1, et par symétrie, en





 $\underline{4^{\text{e}} \text{ exemple}} : f(x) = x^3 + x$

- Etudier les variations de f
- Montrer que le point M₀(0 ;0) est un point d'inflexion
- Donner la droite (T) tangente à la courbe représentative (≤) de f en M₀
- Tracer dans un repère orthogonal (0, i; j) la courbe (ζ) et la droite (T)
- Df = R
- Parité : $f(-x) = -x^3 x = -(x^3 + x) = -f(x)$
- f est donc impaire , $D_e = [0; +\infty[$
- Limites

$$\begin{array}{ll}
\circ & \lim_{x \to 0} f(x) = 0 \\
\circ & \lim_{x \to 0} f(x) = +\infty
\end{array}$$

- $f'(x)=3x^2+1$
- Tableau de variation :

f'(x) ne peut pas être égal à 0

X	0 + ∞
f'(x)	+
f(x)	0 +∞

• $M_0(0;0)$ est un point d'inflexion si f'' s'annule en x_0 et change de signe en x_0

f''(x) = 6x, f''(x) = 0 si et seulement si x = 0.

Х	$-\infty$		Q		$+\infty$
f "		-	ф.	+	

Donc M₀ est un point d'inflexion

• Equation de la tangente (T) en M_0 : y=f'(0)(x-0)+f(0) ou (T):y=x

Courbe

