

Charge et décharge du condensateur, dipôle RC

1. RELATIONS FONDAMENTALES POUR UN CONDENSATEUR

L'application de la tension U génère un champ électrostatique de valeur E dans l'espace entre les armatures .Le vecteur E est normal aux armatures et orienté dans le sens des potentiels décroissants.

$$E = \frac{U}{d}$$

La capacité C du condensateur s'exprime en Farad (F). Elle est définie par la relation

$$\mathbf{q_A} = \mathbf{C} \mathbf{u_{AB}}$$
. {unités SI: q(C), C(F), u(V)}

A tout instant, les charges des 2 armatures sont opposées : $q_A = -q_B$

Compte tenu de la relation précédente, l'intensité instantanée du courant dans les branches d'alimentation du condensateur est:

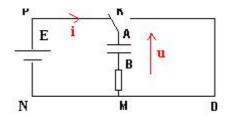
$$i = \lim (\frac{\Delta q_A}{\Delta t}) = \frac{dq_A}{dt} = C.\frac{du_A}{dt}$$

Cette relation relie l'intensité du courant a la tension. Elle montre que l'intensité est à chaque instant proportionnelle au coefficient directeur de la tangente à u(t). Ainsi l'allure de i(t) peut être déduite facilement de celle de u(t).

L'énergie potentielle électrostatique stockée par un condensateur chargé est donnée par la relation :

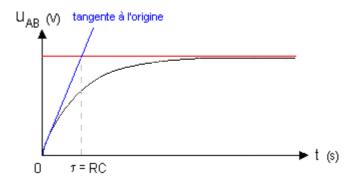
$$E = \frac{1}{2}q_A \cdot U = \frac{1}{2}C, U^2$$

Remarque:


- Des électrons arrivent sur une armature pendant que d'autres quittent l'autre armature. Ces électrons ne traversent pas le diélectrique qui est isolant.
- D'après la relation précédente, si la tension u_{AB} est constante alors l'intensité du courant $\Box i_{AB} = C \frac{du_{AB}}{dt}$ est nulle.

2. DIPÔLE RC – ETUDE EXPERIMENTALE – CONSTANTE DE TEMPS τ = RC

2.1 Etude expérimentale de la charge sous tension constante d'un condensateur à travers une résistance R



Le générateur délivre une tension constante égale à E .

Lorsqu'on relie l'interrupteur K à P le condensateur se charge en fonction du temps. Pendant le régime transitoire, la tension u_{AB} croît selon une fonction exponentielle

$$\mathbf{u}(\mathbf{t}) = \mathbf{E}[1 - \exp(-\frac{\mathbf{t}}{\tau})]$$

Quand le régime permanent est atteint, la tension u_{AB} est constante et égale à E et l'intensité du courant est nulle

La constante de temps t d'un dipôle RC est le temps pour lequel la tangente à l'origine coupe l'asymptote horizontale. Elle caractérise la rapidité de la charge. On montre que : $\tau = RC \{\tau(s), R(\Omega), C(F)\}$

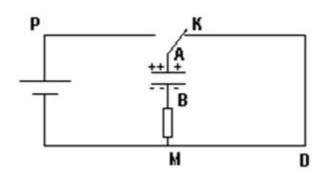
Cette expression de t est bien homogène a une durée, en effet, d'après les relations précédentes l'unité de C est **A.s.V⁻¹**, celle de R est **V.A⁻¹** (d'après la loi d'ohm) et donc l'unité du produit RC après simplification est bien **s**(seconde).

L'application de l'expression $u_{AB}(t)$ permet d'écrire :

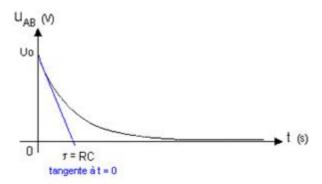
- Si to = 0 s alors
$$u_{AB}$$
 = E (1 - exp - 0) = E (1 - 1) = 0 V

- Si
$$t_1$$
 = t alors u_{AB} = E (1 - exp - 1) = 0,63 E = 63 V

- Si
$$t_2$$
 = 5.t alors u_{AB} = E (1 - exp - 5) = 0,993 E = 99,3 V


- Si t tend vers l'infini alors u_{AB} tend vers E = 100 V

Retenons qu'au bout d'un temps égal à la constante t = RC la charge a atteint 63 % de sa valeur limite et qu'au bout d'un temps de 5.t, la charge a dépassé 99 pour cent de sa valeur limite.


2.2 Étude expérimentale de la décharge d'un condensateur à travers une résistance R.

Lorsqu'on relie l'interrupteur K à D le condensateur, initialement chargé, se **décharge** à travers la résistance en fonction du temps.

Pendant le **régime transitoire**, la tension **u**_{AB} décroît.

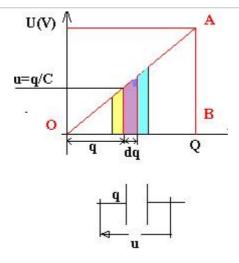
Quand le **régime permanent** est atteint, la tension \mathbf{u}_{AB} devient constante (nulle) et l'intensité du courant est nulle.

La constante de temps \mathbf{t} d'un dipôle RC est le temps pour lequel la tangente à la date $\mathbf{t} = 0$ coupe l'asymptote $U_{AB} = 0$. Elle caractérise la rapidité de la **décharge**. On montre que $\mathbf{t} = \mathbf{RC}$.a la même expression que pour la charge.

Pour étudier l'influence de R et C sur la charge et la décharge, ouvrir le fichier : simulation de la charge et de la décharge

3. ÉNERGIE EMMAGASINÉE DANS UN CONDENSATEUR :

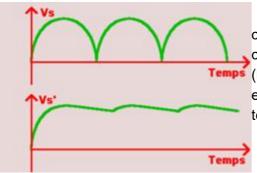
A la date t, la charge de l'armature du condensateur est q, la tension $u = \frac{q}{C}$ et l'intensité du courant de charge i.


Entre t et t+dt, le condensateur emmagasine l'énergie élémentaire:

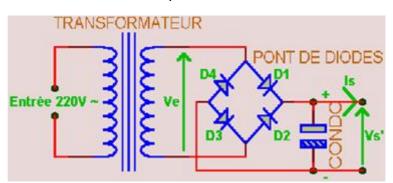
$$\delta E = u.i.\delta t = u.\frac{\delta q}{\delta t} \delta t = u.\delta q$$

représentée par l'aire de la surface hachurée. (voir figure ci-dessous).

En fin de charge, la tension est U et la charge de l'armature Q. L'énergie emmagasinée est égale à la somme des aires des surfaces élémentaires hachurées, c'est-à-dire à l'aire du triangle AOB, soit :

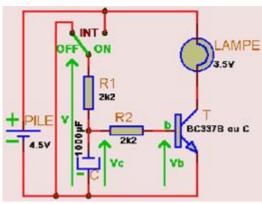

$$E = \frac{1}{2} QU = \frac{1}{2} CU^2$$

4. QUELQUES APPLICATIONS DES CONDENSATEURS:

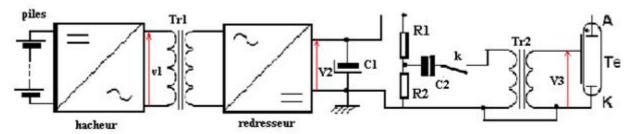

Elles sont très nombreuses, voici quelques exemples.....

4.1 Condensateur de lissage (ou de filtrage) :

Nous trouvons ce type de montage dans toutes les alimentations stabilisées de nos appareils électroniques !



Le pont de diodes D₁, D₂, D₃, D₄ permet de « redresser » le courant alternatif par un courant positif mais non constant. Le condensateur de grande capacité **limite les variations de la tension** (lissage) et donc du courant à la sortie. Il faut ajouter à ce montage encore un **composant stabilisateur** non représenté pour que la tension reste constante lorsque l'alimentation débite son courant.


4.2 Circuit de temporisation ou « minuterie »:

En position « ON » le condensateur se charge à travers la résistance R_1 , la tension Vc augmente jusqu'à un seuil qui déclenche le fonctionnement du transistor T .La lampe s'allume alors au bout d'un temps qui dépend de la constante de temps R_1 .C .En position « OFF » le condensateur se décharge, la lampe reste allumée tant que Vc est supérieure au seuil. La aussi, la durée de temporisation dépend de la constante de temps.

5. Flash électronique

La tension délivrée par les piles (typiquement 6 V) est convertie en tension alternative V_1 par un hacheur, cette tension est élevée dans un rapport de 1 :50 par le transformateur Tr1, puis redressée (V_2) pour charger le condensateur C_1 .

Cette tension se retrouve aux bornes du tube à éclat Te. Pendant que C_1 se charge à quelques 300V, le condensateur C_2 , de plus faible capacité se charge à une fraction de cette tension grâce au pont diviseur de R_1 et R_2 .

Quand on ferme momentanément K, C₂ se décharge brutalement dans l'enroulement primaire du transformateur du transfo d'impulsion Tr2.Ce dernier possédant un rapport de transformation de 1 :36, une très haute tension(10.000V) est engendrée dans l'enroulement secondaire reliée à l'électrode extérieure du tube Te.

La très haute tension provoque l'ionisation des molécules de xénon et par conséquent une baisse de la résistance entre les électrodes A et K.

Le condensateur C_1 se décharge alors brusquement dans le tube provoquant l'émission d'un éclair lumineux très intense.

Quand C_1 s'est déchargé, le tube revient à une résistance interne très élevée autorisant la recharge de C_1 et C_2 (le contact K étant ouvert à nouveau). On est alors prêt pour un nouveau cycle.