EXERCICES SUR LES SUITES NUMÉRIQUES

Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICE 1:

 $I_{1} - U_{1}$; U_{n} ; r et S_{n} désignant respectivement le premier terme, le $n^{i \text{ème}}$ terme, la raison et la somme des n premier termes d'une suite arithmétique, calculer :

- 1) U_n et S_n , connaissant $U_1 = 7$; n = 120; r = 5;
- 2) U_1 et S_n , connaissant $U_n = 326$; n = 72; r = 2;
- 3) $r \ et \ S_n$, connaissant $U_1 = 397$; $U_n = 64$; n = 1000;
- 4) $n \ et \ U_n$, connaissant $U_1 = 50$; r = -4; $S_n = 330$;
- 5) $n \ et \ r$, connaissant $U_1 = -3$; $U_n = 6$; $S_n = 28.5$;
- 6) U_1 et U_n , connaissant n = 54; r = 4; $S_n = 270$;
- II) Calculer dans le cas suivant d'une suite géométrique :
 - 1) U_n et S_n , connaissant $U_1 = 2$; q = 3; n = 5;
 - 2) q et S_n , connaissant $U_1 = 162$; $U_n = 32$; n = 5;
 - 3) U_1 et S_n , connaissant $U_n = 54$; q = 3; n = 4;
 - 4) U_1 et U_n , connaissant q = 0.5; n = 7; $S_n = 571.5$;
 - 5) n et q, connaissant $U_1 = 48$; $U_n = 243$; $S_n = 633$;

EXERCICE 2:

- 19 Etudier le sens de variation de chacune des sui tes suivantes définies par a) $u_n = 3n - 8$; b) $v_n = -5n + 4$; c) $w_n = 7n - 3$.
- 2°) Quelle est la nature de la suite (u n) ? Préciser son premier terme u0 et sa raison.
- 3°) Soit la suite (t_n) définie par t₀ = 2 et t_{n+1} = $\frac{t_n+4}{3}$.

On pose $k_n = t_n - 2$; montrer que (k_n) est une suite géométrique dont déterminera la raison et le premier terme.

EXERCICE 3:

On considère la suite (U_n) définie sur \mathbb{N} par $\begin{cases} u_0 = -4 \\ u_{n+1} = \frac{3}{4}u_n + 1 \end{cases}$

- 1°) représenter graphiquement les cinq premiers ter mes de la suite (U_n) sur l'axe des abscisses.
- 2°) On pose $v_n = u_n \alpha$. ($\alpha \in \mathbb{R}$)
 - a) Déterminer α pour que (V_n) soit une suite géométrique.
 - b) En déduire que \forall $n \in \mathbb{N}$; $U_n = 4 8 \left(\frac{3}{4}\right)^n$
 - c) \forall $n \in \mathbb{N}$; on note $S_n = u_0 + u_1 + \dots + u_n$. Trouver l'expression de S_n en fonction n.
 - d) Déterminer les limites des suites (u_n) et (S_n).

EXERCICE 4:

On considère la suite (U_n) définie sur \mathbb{N} par $\begin{cases} u_0 = 1 + \sqrt{2} \\ u_{n+1} = 1 + \sqrt{u_n^2 - 2u_n + 4} \end{cases}$

- 19 Calculer u₁ et u₂.
- 2) Justifier que $\forall n > 1$, $u_n \ge 1$.
- 3) On pose $v_n = (u_n 1)^2$
 - a) Montrer que (v_n) est une suite arithmétique.
 - b) Calculer v_n puis u_n en fonction de n.

EXERCICE 5:

On considère la suite (U_n) définie sur \mathbb{N} par $\begin{cases} u_0 = 2 \\ u_{n+1} = u_n + \left(\frac{2}{3}\right)^n \end{cases}$

- 1°) Calculer les termes u₁; u₂; u₃.
- 2) On pose $v_n = u_{n+1} u_n$; la suite (v_n) est-elle géométrique?
- 39 Soit $S_n = v_0 + v_1 + \dots + v_n$
 - a) Calculer S_n en fonction de n.
 - b) Montrer que $S_n = u_{n+1} u_0$.
 - c) En déduire l'expression de u_{n+1} puis celle de u_n en fonction de n.

EXERCICE 6:

I – On considère la suite (V_n) définie par : $\begin{cases} V_1 = 1 \\ 5V_{n+1} = V_n + 8 \end{cases}$

- 1) Calculer V_2 ; V_3 ; V_4 ;
- 2) On pose $U_n = V_n 2$. Démontrer que (u_n) est une suite géométrique.
- 3) Démontrer que la suite (V_n) est convergente et trouver sa limite ;
- 4) Calculer $S_n = U_1 + U_2 + U_3 + \dots + U_n$.
- **5)** Calculer: $\lim_{n\to +\infty} S_n$.

II –

Soient a, b, c, d, e cinq termes consécutifs d'une suite arithmétique de raison r telle que : $\begin{cases} a+b+d+e=60\\ d+e=42 \end{cases}.$

- 1) Exprimer a, b, d et e en fonction de c et r.
- 2) Déterminer les nombres réels a, b, c, d, e.

EXERCICE 7:

I) – 1°) Trouver 3 nombres consécutifs a , b , c d'une s uite arithmétique sachant que :

$$\begin{cases} a+b+c = \frac{12}{7} \\ 5a-6b+c = \frac{-10}{2} \end{cases}$$
 Donner la raison de cette suite.

2°) Trouver 3 nombres a , b , c en progression géom étrique sachant que :

$$\begin{cases} a+b+c = 403 \\ c-a = 312 \end{cases}$$

II) Soit (U_n) une suite arithmétique croissante telle que :

$$\begin{cases} U_1 + U_2 + U_3 = 9 \\ U_1^2 + U_2^2 + U_3^2 = 35 \end{cases}$$

- 1. Calculer le premier terme U_0 et la raison r de cette suite, puis exprimer le terme général U_n en fonction de n.
- 2. Soit (V_n) la suite définie par : $V_n = 2^{Un}$.
- a) Montrer que (V_n) est une suite géométrique dont on déterminera V₀ et q.
- b) Calculer: $P_n = V_0 \times V_1 \times V_2 \times \dots \times V_n$.

EXERCICE 8:

- 1. Déterminer une progression arithmétique de quatre termes a , b , c , d ayant pour raison r = 6 telle que le produit des termes est égal à 385.
- 2. Soit la suite arithmétique (U_n) de raison r, $(r \neq 0)$ tel que dans cet ordre U_2 ; U_4 ; U_7 sont 3 termes consécutifs d'une suite géométrique de raison $q \neq 1$.
- a) Montrer que $U_0 = 2r$ et $q = \frac{3}{2}$
- b) Sachant que $U_2 = 3$, calculer U_0 puis U_n en fonction de n.
- c) Soit la suite (V_n) définie par : $V_n = e^{Un}$;

Calculer $S_n = U_0 + U_1 + \dots + U_n$ puis en déduire $P_n = V_0 \times V_1 \times \dots \times V_n$.

EXERCICE 9:

- 1) L'Opération Puits, une entreprise de forage estime le coût d'un puits à grand diamètre comme suit :
 - le premier mètre creusé coûte 1000 F
 - le second mètre creusé coûte 1050 F et chaque mètre creusé coûte 50 F de plus que le précédent. Quelle serait la profondeur maximale de ce puits si le crédit alloué à l'entreprise est de 519 750 F?
- 2) Une société Forestière décide de créer un bosquet (Petit bois, touffe d'arbres) à chaque kilomètre entre deux villes A et B distant de 300 Km.
 - Au premier kilomètre le bosquet compte 15 arbres
 - Au second kilomètre le bosquet compte 22 arbres et à chaque kilomètre qui suit le bosquet compte 7 arbres de plus que le précédent.

Quel est le nombre d'arbres que compte le dernier bosquet ?

Quel est le nombre total d'arbres que la société doit planter ?

EXERCICE 10:

1. Trouver sept termes d'une suite géométrique : U₁ ; U₂ ; U₃ ; U₄ ; U₅ ; U₆ ; U₇

tels que :
$$\frac{U_5}{U_1} = \frac{U_5 + U_6 + U_7}{U_1 + U_2 + U_3}$$
 et $\begin{cases} U_1 + U_2 + U_3 = 2 \\ U_5 + U_6 + U_7 = 1250 \end{cases}$

- 2. Soit la suite (U_n) définie par : $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{1}{2}U_n + 5 \end{cases}$
 - a) Calculer U₁; U₂; U₃
 - b) On pose $V_n = \alpha U_n 10$. Quelle valeur faut-il donner à α pour que (V_n) soit une suite géométrique.
 - c) Exprimer Un en fonction de n puis calculer $S_n = V_0 + V_1 + \dots + V_n$.

EXERCICE 11:

A/– soit (U_n) définie par la relation
$$\begin{cases} U_0 = 1 \\ U_{n+1} = \sqrt{2 + U_n} \end{cases}$$

- 1. Montrer que la suite (Un) est à terme positif et majorée par 2.
- 2. Démontrer par récurrence que (U_n) est croissante ;
- 3. la suite (U_n) est-elle convergente ?justifier.

B/– Soit u la suite définie par $U_0 = 1$ et $U_{n+1} = U_n e^{-U_n}$ (n $\in \mathbb{N}$).

On pose
$$\forall$$
 n \in \mathbb{N} ; $S_n = \sum_{i=0}^n U_i$;

- 1. Montrer que u est à termes positifs.
- Montrer que u est décroissante.
- 3. En déduire que u converge et trouver sa limite.
- 4. Montrer que pour tout n de \mathbb{N} $U_{n+1} = e^{-Sn}$.

EXERCICE 12:

Un épargnant dispose au 1^{er} janvier 2006 d'un capital $C_0 = 10~000F$ qu'il place à la Bank of Africa (BOA) à un taux de 6% l'an. Au bout de chaque année le capital est augmenté des intérêts qu'il produit. On désigne par C_n la valeur du capital au bout de n années.

- 1) Calculer C₁; C₂; C₃.
- 2) Démontrer que : $C_n = C_0 \times (1,06)^n$.
- 3) Au bout de combien de temps n le capital C₀ aura-t-il doublé ?
- 4) En supposant le prix du marché stable, en quelle année son capital peut payer une voiture dont le prix est 20 000F?

EXERCICE 13:

A/- On pose
$$\forall$$
 n \in \mathbb{N} , $U_n = \underbrace{1111......111}_{n \ fois}$

- 1) Calculer U_n en fonction de n.
- 2) Soit $S_n(a) = a + aa + aaa + \dots + \underline{aaa.....aaa}$. Calculer: $S_n(1)$ en fonction de n.
- 3) Calculer $S_n(a)$ en fonction de n et de a.
- 4) Calculer $S = S_n(1) + S_n(2) + \dots + S_n(9)$.

B/– Soient (Δ_1) ; (Δ_2) ; (Δ_3) ;; (Δ_n) ; n droites d'un plan \mathcal{P} , sécantes deux à deux en des points distincts. Soit Up le nombres des régions du plan, déterminées par p de ces droites. Etablir une relation entre U_{p+1} et U_p. En déduire Un en fonction de n.

EXERCICE 14:

Soient (U_n) et (V_n) deux suites définies par :

$$U_n = \frac{2^n - 4n + 3}{2}$$
 et $V_n = \frac{2^n + 4n - 3}{2}$

On pose $d_n = U_n - V_n$ et $w_n = U_n + V_n$.

- 1. montrer que (d_n) est une suite arithmétique dont on précisera la raison et le 1^{er} terme.
- 2. montrer que la suite (W_n) est une suite géométrique dont on précisera la raison et le 1^{er} terme.
- 3. déduire de ce qui précèdent les sommes suivantes :

$$S_n = U_0 + U_1 + U_2 + \dots + U_n$$
 et $S_n' = V_0 + V_1 + \dots + V_n$.

EXERCICE 15:

L'étude de la production intérieure brute, au Mali (en milliard de francs) a donné le résultat suivant :

- Si P(n) désigne la production intérieure de l'année numérotée n, (n $\in \mathbb{N}$), le rapport : $\frac{P(n+1)-P(n)}{P(n)}=0,11$ constant. On suppose P(0)= 140.
- 1. a) calculer P(n+1) en fonction de P(n);
 - b) calculer P(1) et P(2).
 - c) calculer P(n) en fonction de P(0) et n. En déduire P(10). (On arrondira au milliard supérieur).
- 2. A partir de quelle année la production sera-t-elle supérieure ou égale à $3\times P(0)$?
- 3. A partir de quelle année la production sera-t-elle supérieure ou égale à 14.000 ?

EXERCICE 16:

- 1. pour tout entier naturel n on pose : $I_n = \int_n^{n+1} (x+1)e^{-x} dx$
 - a) calculer I_n en fonction de n à l'aide d'une intégration par parties.
 - b) Etudier la convergence de la suite (I_n).
- 2. pour tout entier naturel n on pose : $S_n = \sum_{i=0}^n I_i$.
- a) Calculer S_n en fonction de n et déterminer la limite de S_n quand n tend vers $+\infty$.
- b) calculer une valeur approchée de S₁₀.

EXERCICE 17:

On pose $I_0 = \int_1^e x dx$ et $\forall n \in IN^*$, $I_n = \int_1^e x (\ln x)^n dx$

- 1°) Calculer I_0 puis I_1 en utilisant une intégration par parties.
- 2) Pour tout $n \in \mathbb{N}^*$ établir que : $2I_n + nI_{n-1} = e^2$.
- 3°) Montrer que la suite de terme général I_n est décroissante sur [1 ;e].
- 4°) En déduire en utilisant la relation de récurren ce de la question 2°) que $\frac{e^2}{n+3} \le I_n \le \frac{e^2}{n+2}$. Calculer $\lim_{n \to +\infty} I_n$ et $\lim_{n \to +\infty} n I_n$.

EXERCICE 18:

A/- soit la suite (U_n) définie par U₀ = 0 et $U_{n+1} = \sqrt{U_n + 6}$;

- 1) démontrer que (U_n) est à termes positifs et majorée par 5.
- 2) Quelle est la limite éventuelle de la suite (U_n) ?
- 3) Etudier le sens de variation, puis la convergence de (U_n).
- 4) Démontrer que pour tout entier naturel n, on a :

$$\left| U_{n+1} - 3 \right| \le \frac{1}{3} \left| U_n - 3 \right| \quad et \quad \left| U_n - 3 \right| \le 3 \left(\frac{1}{3} \right)^n$$

B/- Un bien qui valait au départ 5.000.000 Frs se déprécie d'année en année suivant la loi suivante :

La valeur du bien de l'année considérée est égale au produit du bien de l'année précédente par 0,65, ce produit augmenté de 550.000 frs.

- 1) Au bout de combien d'années le bien sera-t-il inférieur à 1 572 384,6 Frs ?
- 2) Est-il possible que le bien soit un moment inférieur à 1 571 420 ?.

EXERCICE 19:

Le plan complexe est rapporté au repère (O, i ; j) unité graphique 2cm. Soient A₀ le point d'affixe 2, A₀ le point d'affixe 2i et A₁ le milieu du segment [A₀ A₀].

Plus généralement si A_n est un point d'affixe z_n ; on désigne par A'_n le point d'affixe iz_n et par A_{n+1} le milieu de $[A_n; A'_n]$. On note P_n et θ_n le module et l'argument de z_n .

- 1°) Déterminer les affixes des points A₁; A₂; et A₃. Calculer P_1 ; P_2 ; P_3 et θ_1 ; θ_2 ; θ_3 .
- 2°) a) Pour tout entier n, exprimer Z_{n+1} en fonction de Z_n .
 - b) Exprimer P_n et θ_n en fonction de n.
- c) Déterminer la limite de la suite (P_n). Interpréter géométriquement ce résultat.
 - d) Comparer les modules et les arguments de Z_n et Z_{n+8} .
- 39 Établir que : $A_n A_{n+1} = \frac{1}{\sqrt{2}} A_{n-1} A_n$.
- 4°) Après avoir exprimé A nAn+1 en fonction de n, déterminer en fonction de n la longueur D_n de la ligne brisée : A₀ A₁ A₂......A_{n-1} A_n A_{n+1}. Déterminer la limite de la suite (D_n) .

EXERCICE 20:

Un fonctionnaire consacre 80% de son revenu à une épargne. Ce fonctionnaire voit son revenu annuel augmenter de 3% par an et décide de diminuer la part de l'épargne dans son revenu annuel de 2,5% par an. Le revenu initial du fonctionnaire est $R_0 = 400\ 000\ F$. On désigne par R_n le revenu annuel du fonctionnaire et E_n l'épargne annuelle au bout de n années $(n \in \mathbb{N})$.

- 1°) Calculer l'épargne initiale E 0 du fonctionnaire.
- 2°) Calculer le revenu R₁ et l'épargne E₁ de l'année suivante (n = 1) ;
- 3°) Calculer le revenu R 2 et l'épargne E2 de l'année suivante (n = 2) ;
- 4°) Exprimer R_n en fonction de R_0 et n; puis E_n en fonction de E_0 et n.
- 5°) Calculer la limite de E_n quand n tend vers $+\infty$.

EXERCICE 21:

Soit la suite (Z_n) la suite définie sur \mathbb{N} par $\begin{cases} z_0 = 1 \\ z_{n+1} = \frac{1}{2}(z_n + i) \end{cases}$

- 1°) Soit dans le plan complexe P muni du repère ort honormé (O ;I ;J) les points M_n d'affixes Z_n . Placer M_0 ; M_1 ; M_2 ; M_3 et M_4 .
- 2°) Soit (X_n) et (Y_n) les suites de nombres réels définies par $\forall n \in IN$, $Z_n = X_n + iY_n$. Exprimer X_{n+1} et Y_{n+1} respectivement en fonction de (X_n) et (Y_n) . En déduire (X_n) et (Y_n) en fonction de n.
- 3) Montrer que (X_n) et (Y_n) sont convergentes et donner leurs limites respectives. Que peut-on en déduire pour la suite (Z_n) ?

EXERCICE 22:

- I Soit une suite arithmétique de premier terme u₁ et de raison r.
- 1°) Calculer u_1 et r sachant que u_{100} =781 et $u_1 + u_2 + + u_{100}$ = 38500
- 2°) Trouver la plus petite valeur de n pour laquell e $u_1 + u_2 + + u_{100} \le 168300$
- II Soit la fonction $f: t \mapsto \frac{1}{t}$ pour $t \in [n; n+1], n \succ 0$
- 1°) Montrer que pour tout n de \rfloor^* , on a : $\frac{1}{n+1} \le \int_n^{n+1} \frac{1}{t} dt \le \frac{1}{n}$.
- 2°) On considère la suite de terme général $U_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n$; $n \ge 1$.

Montrer que (U_n) est monotone à termes positifs ; conclure.

EXERCICE 23:

Pour tout entier naturel *n* non nul; on pose $I_n = \int_0^1 \frac{x^n}{1+x^2} dx$

- 1°) Montrer que $I_1 = \frac{1}{2} \ln 2$
- 2) Montrer que pour tout entier naturel n non nul, on a : $I_n \ge 0$
- 39) Montrer que pour tout entier naturel n non nul, on a : $\frac{1}{2(n+1)} \le I_n \le \frac{1}{n+1}$
- 4°) Montrer que \forall n ∈ N* la suite (I_n) est décroissante.

EXERCICE 24:

Pour tout entier naturel *n* non nul; on pose $I_n = \int_{e^{n-1}}^{e^n} \frac{2 \ln t}{t} dt$

- 1°) Montrer que pour tout entier naturel n non nul, on a : $I_n = 2n 1$
- 2) Montrer que $\forall n \in \mathbb{N}^*$ la suite (I_n) est bornée
- 3) Montrer que $\forall n \in \mathbb{N}^*$ la suite $\left(\frac{I_n}{n}\right)$ est convergente
- 4) Montrer pour n $\in \mathbb{N}^*$, on a : $I_1 + I_2 + I_3 + \dots + I_n = n^2$.

EXERCICE 25:

Soit a et b deux réels strictement positifs.

On définit la suite (U_n), pour tout entier naturel n, par

$$U_0 = a$$
; $U_1 = b$; $U_{n+2} = U_{n+1} + 6U_n$.

On considère les suites (V_n) et (W_n) définies, pour tout entier naturel n,

$$V_n = U_{n+1} - 3U_n$$
 et $W_n = U_{n+1} + 2U_n$.

1°) Montrer que (V_n) est une suite géométrique de raison q=-2 et de premier terme $V_0=b-3a$.

Déterminer, pour tout entier naturel n, V_n en en fonction de n, a et b.

- 2°) Montrer aussi que (W $_{\rm n}$) est une suite géométrique et exprimer W $_{\rm n}$ en fonction de n, a et b.
- 3°) En déduire U_n en fonction de n, a et b.
- 4°) Montrer que si (U_n) est une suite géométrique, alors sa raison ne peut être que q = -2 ou q = 3.
- 5°) déterminer la limite de la suite (U_n).