

Fonctions continues

1. Continuité en un point x₀

Soit f une fonction définie sur un intervalle I de IR, et $x_0 \in I$, distinct des extrémités de I

1.1 Définition :

f est continue en x_0 si f admet une limite finie en x_0 et cette limite est $f(x_0)$, autrement dit, f est continue en x_0 si et seulement si $\lim_{x\to x_0}$ $f(x) = f(x_0)$

Une fonction qui n'est pas continue en a est dite discontinue en a.

Exemple : Soit f la fonction définie par $\begin{cases} f(x) = \frac{x^2 - x - 2}{x + 1} & \text{si} \quad x \neq -1 \\ f(-1) = -3 \end{cases}$

f est elle continue en $x_0 = -1$?

$$\lim_{x \to -1} \ f(x) = \lim_{x \to -1} \ \frac{(x-2)(x+1)}{(x+1)} = \lim_{x \to -1} \ x-2 = -3 = f(-1)$$

Donc f est continue en $x_0 = -1$

1.2 Continuité à gauche – Continuité à droite :

- Si f est définie sur $[x_0; x_0 + \alpha]$, $\alpha > 0$, f est continue à droite en x_0 si la $\lim_{x \to x_0^+} f(x) = f(x_0)$

- Si f est définie sur $]x_0 - \alpha; x_0]$, f est continue à gauche en x_0 si $\lim_{x \to x_0^-} f(x) = f(x_0)$

On rappelle que f admet une limite en x_0 si et seulement si $\lim_{x\to x_0^+} f(x) = \lim_{x\to x_0^-} f(x)$

Donc f est continue en x₀ si et seulement f est continue à gauche en x₀ et continue à droite en x₀, c'est-à-

dire si et seulement si $\lim_{x\to x_0^+} f(x) = \lim_{x\to x_0^-} f(x) = f(x_0)$

(on utilise cette définition dans le cas où les expressions de f(x) sont différentes à gauche et à droite de a)

Exemple:

$$\begin{cases} f(x) = \frac{1}{x-1} & \text{si} \quad x > 0 & \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (2x-1) = -1 \\ f(x) = 2x-1 & \text{si} \quad x \le 0 & \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{1}{x-1} = -1 \\ f(0) = -1 & f(0) = -1 \end{cases}$$

Donc f est continue en $x_0=0$

2. Continuité sur un intervalle

2.1 Définition

On dit que f est continue sur a,b si elle est continue en chaque point de cet intervalle.

f est continue sur [a,b], si elle est continue sur [a,b], continue à droite en a et continue à gauche en b.

Graphiquement, une fonction est continue si la courbe représentative de cette fonction est continue.

2.2 Continuité des fonctions usuelles

- · Toute fonction constante est continue sur IR .
- La fonction identité $x \mapsto x$ est continue sur IR.
- La fonction racine carrée $x \mapsto \sqrt{x}$ est continue sur [0; +\infty]
- Les fonctions sinus et cosinus sont continues sur IR.

2.3 Opérations sur les fonctions continues

Sif et g sont continues sur un intervalle I, alors f + g, $\lambda . f(ou \lambda \in R)$ et f.g sont continues sur I.

Si de plus g ne s'annule pas sur I, alors $\frac{f}{g}$ est continue sur I.

Si f est continue sur I et g continue sur J = f(I), alors g o f est continue sur I.

Conséquences

- · Toute fonction polynôme est continue sur IR .
- Toute fonction rationnelle est continue sur son domaine de définition.
- Si f est continue et positive sur I, alors \sqrt{f} est continue sur I.
- La fonction tangente est continue sur son domaine de définition.

Ces résultats découlent des propriétés des limites

2.4 Prolongement par continuité.

Soit I un intervalle de IR, x_0 un élément de I, et f une fonction définie sur I - $\{x_0\}$.

Si f admet une limite finie en x_0 , c'est-à-dire $\lim_{x\to x_0} f(x)$ est finie, alors f est prolongeable par continuité en x_0

On obtient une fonction continue g en posant :

$$\begin{cases} g(x) = f(x) & \text{si} \quad x = x_0 \\ g(x_0) = \lim_{x \to x_0} f(x) \end{cases}$$

Cette fonction g, continue en x₀, est appelée prolongement de f par continuité en x₀

Auteur: Equipe maths

2.5 Propriétés des fonctions continues sur une intervalle

Théorème

Si f est continue sur [a,b] alors l'image de [a,b] par f est un intervalle

Théorème des valeurs intermédiaires

Soient a et b deux éléments de l'ensemble de définition de f tels que a < b.

Sif est continue sur [a,b] alors quel que soit y_0 appartenant à [f(a);f(b)] ou [f(b);f(a)], il existe au moins $c \in [a,b]$ vérifiant $f(c) = y_0$; en d'autres termes, quel que soit $y \in [f(a);f(b)]$ ou [f(b);f(a)], l'équation $y_0 = f(x)$ admet au moins une solution $c \in [a,b]$.

Si, de plus, f est strictement monotone, cette solution est unique.

Cas particuliers :

- Si f est continue sur [a,b] et f(a).f(b) < 0 l'équation f(x) = 0 admet au moins une solution dans l'intervalle [a,b]
- Si f est continue et strictement monotone sur [a,b] et f(a).f(b) < 0 l'équation f(x) = 0 admet une solution unique dans l'intervalle [a,b], i.e, il existe au moins un réel unique α tel que $f(\alpha) = 0$.

Exemple

Montrer que l'équation $x^3-2x-1-\sin(x)=0$ admet au moins une solution dans l'intervalle [0 ; π]. On n'a pas de méthode qui permet de résoudre algébriquement cette équation.

 $f(x)=x^3-2x-1-\sin(x)$. f est la somme de deux fonctions continues $x \mapsto x^3-2x-1$ et sin, donc f est continu(sur IR). f (0)= -1 <0 et f(π)= $\pi^3-2\pi-1 > 0$. Donc l'équation admet au moins une solution dans cette intervalle.

Théorème

Si f est continue et strictement monotone sur un intervalle I, alors f réalise une bijection de I sur J = f(I).

Donc si b est un élément de J, alors il existe un élément a unique de I, tel que f(a)= b.

Auteur: Equipe maths