

Séquence 1 : Équations et inéquations homographiques

1. Signes du binôme

1.1 Signe de x - c

L'expression x - c est négative si x < c, positive si x > c ou nulle pour x = c. On peut résumer ces résultats dans un tableau appelé tableau de signe.

Х	-∞		С		+∞
x - c		_	0	+	

1.2 Signe de a x + b

Comme $ax+b=a(x+\frac{b}{a})$, ax+b a même signe que a si $x>-\frac{b}{a}$ ou du signe de l'opposé de a si $x<-\frac{b}{a}$. On peut résumer ces résultats dans un tableau de signe.

X	$-\infty$	b a	+∞
ax+b	Signe de (-a)	0	Signe de (a)

Exemple:

Dresser le tableau de signes de -2x+5.

-2x+5 = 0 si $x = \frac{5}{2}$. Ici, a = -2 donc le signe de a est négatif . On a le tableau de signes suivant :

х	$-\infty$	<u>5</u> 2	+∞
-2x+5	+	ф	-

1.3 Signes du produit de deux binômes

Exemples:

1) Dresser le tableau de signes de $T_1(x)=x^2-9$.

$$x^2-9=(x-3)(x+3)$$
 , donc $x^2-9=0$ si $x=-3$ ou $x=3$

х	$-\infty$	-3		+3	+∞
x + 3	_	0	_		+
x - 3	_		+	0	+
T ₁ (x)	+	0	-	0	+

2) Dresser le tableau de signes de $T_2(x)=(2x+1)(-5x+3)$

$$T_2(x)=0 \text{ si } (2x+1)(-5x+3)=0 \text{ . On en d\'eduit alors } (2x+1)=0 \text{ ou } (-5x+3)=0 \text{ , ce qui donne}$$

$$x=-\frac{1}{2} \text{ ou } x=\frac{3}{5} \text{ .}$$

х	$-\infty$	$-\frac{1}{2}$		<u>3</u> 5	+∞
2x + 1	_	0	+		+
-5x + 3	+		+	0	_
T ₂ (x)	_	0	+	0	-

Dans le cas général :

$$\mathrm{T}(x) = (ax+b)(cx+d) = ac(x+\frac{b}{a})(x+\frac{d}{c}) \quad \text{. Ainsi, T(x) = 0 si} \quad x = -\frac{b}{a} \quad \text{ou} \quad x = -\frac{d}{c} \quad .$$

On a alors le tableau de signes suivant (en supposant que $-\frac{b}{a} < -\frac{d}{c}$):

x	$-\infty$ - $\frac{1}{3}$	<u> </u>	<u>+</u> +∞
ac	Signe de ac	Signe de ac	Signe de ac
$x + \frac{b}{a}$	- (+	+
$x + \frac{d}{c}$	-	_ 0	+
T(x)	Signe de ac () Signe de (-ac) (Signe de ac

2. Équations associées aux fonctions homographiques

Soit $f(x) = \frac{ax+b}{cx+d}$. Pour résoudre f(x) = 0, il faut d'abord déterminer son ensemble de définition

puis résoudre ax+b=0 . $\frac{ax+b}{cx+d}=0$ si ax+b=0 et $cx+d\neq 0$.

L'ensemble des solutions est : $S = \{-\frac{b}{a}\}$.

Exemples:

1) Résoudre dans IR : $\frac{2x+3}{4x-6}=0$.

$$\frac{2x+3}{4x-6} = 0 \quad \text{si} \quad 2x+3 = 0 \quad \text{et} \quad 4x-6 \neq 0 \quad . \quad x = -\frac{3}{2} \quad \text{et} \quad x \neq \frac{3}{2} \quad \text{donc} \quad S = \{-\frac{3}{2}\} \quad .$$

2) Soit
$$f(x) = \frac{x+3}{x-2}$$
.

i- Déterminer l'ensemble de définition de f.

ii- Déterminer les coordonnées du point A, intersection de la courbe de f avec l'axe des abscisses.

i- On a
$$D_f = IR \setminus \{2\}$$
.

ii- L'abscisse de ce point est la solution de f(x) = 0. Après calcul, on trouve x = -3; d'où A (-3; 0).

3. Inéquations associées aux fonctions homographiques

3.1 Tableau de signes de $\frac{ax+b}{cx+d}$

Soit
$$f(x) = \frac{ax+b}{cx+d}$$
. On peut écrire $f(x) = \frac{a(x+\frac{b}{a})}{c(x+\frac{d}{c})}$.

La forme générale est donc la suivante (on suppose que $-\frac{b}{a} < -\frac{d}{c}$):

X	-∞	- 	<u>b</u> a	$-\frac{d}{c}$	+∞
<u>a</u> C	Signe de	<u>a</u> c	Signe de	<u>a</u> C	Signe de $\frac{a}{c}$
$x + \frac{b}{a}$	_) +		+
$x + \frac{d}{c}$	_		_	() +
T(x)	Signe de	a C	o Signe de ($-\frac{a}{c}$)	Signe de $\frac{a}{c}$

On peut utiliser alors directement le tableau suivant :

х	-∞	- <u>b</u>	- <u>d</u>	+∞
T(x)	Signe de	$\frac{a}{c}$ OSigne de	$e\left(-\frac{a}{c}\right)$ Signe of	$le \frac{a}{c}$

3.2 Inéquations associées au fonction homographiques

On cherche à résoudre l'une des inéquations suivantes :

$$\frac{ax+b}{cx+d} < 0$$
 ;

$$\frac{ax+b}{cx+d} \leq 0$$

$$\frac{ax+b}{cx+d} < 0$$
; $\frac{ax+b}{cx+d} \le 0$; $\frac{ax+b}{cx+d} \ge 0$ ou $\frac{ax+b}{cx+d} > 0$.

$$\frac{ax+b}{cx+d} > 0$$

Étape 1 : On dresse le tableau de signe de $\frac{ax+b}{cx+d}$

Étape 2 : On hachure les colonnes qui contiennent les signes ne répondant pas à l'inégalité.

Étape 3 : On écrit la solution sous forme d'intervalle ou de réunion d'intervalles.

Exemple:

Résoudre dans IR : $\frac{x+1}{x-2} < 0$.

Étapes 1 et 2 : On fait le tableau de signe de $\frac{x+1}{x-2}$ et on élimine les colonnes avec les signes ne répondant pas à la question. On a a=1 , c=1 et $\frac{a}{c}=1$, qui a un signe positif.

х	$-\infty$	-1		2	+∞
T(x)	////	//0	_		/////

$$S =] -1 ; 2[$$