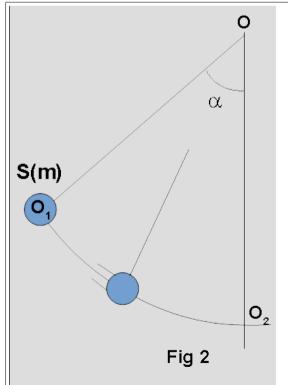


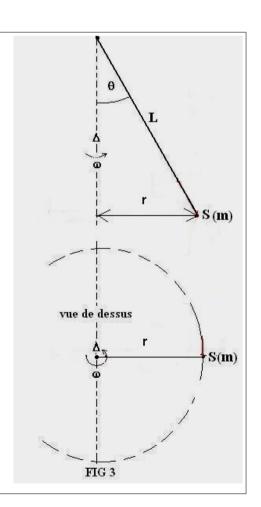
(1,0 pt)

(1,0 pt)

Enoncé Bac D parties 1 et 2 Dynamique en rotation , calcul d'un moment d'inertie


MECANIQUE: (6 points)

Dans ce problème on négligera tous les frottements et l'action de l'air. On prendra $||\vec{g}|| = 10 \text{ m.s}^{-2}$ et $\pi^2 = 10$. Les deux parties I et II sont indépendantes.


Partie / (3 pts)

Une petite sphère S, ponctuelle de masse m = 200g est accrochée à un fil souple, de masse négligeable, inextensible, de longueur $\ell = 1m$. L'autre extrémité du fil est attachée à un point fixe.

- 1°) On écarte S de la position d'équilibre; le fil tendu fait un angle α = 60° avec la verticale. On lâche la sphère sans vitesse initiale (voir figure 2). En appliquant le théorème de l'énergie cinétique, calculer la vitesse de S au passage à la position d'équilibre.
- 2°) L'ensemble $\{ \text{ fil} + S \}$ tourne à la vitesse angulaire ω constante autour d'un axe vertical (Δ) . Le fil fait alors un angle constant $\theta = 30^\circ$ avec la verticale (Voir figure 3).
 - En appliquant le théorème du centre d'inertie (T.C.I), trouver une relation entre l'angle θ et la vitesse angulaire ω. Calculer ω.
 - b Exprimer et calculer la tension du fil. (1.0 pt)

Pour éviter toute confusion d'écriture, la longueur OO₁ du pendule sera notée L et non l.

Partie II (3 pts)

On dispose d'une tige homogène OA, de section constante, de longueur 2ℓ , de masse $M \equiv 3m$. La tige est mobile autour d'un axe horizontal(Δ) passant par O. A l'extrémité A est fixé un solide ponctuel S de masse m. Les frottements de la tige sur l'axe, en O, sont supposés négligeables (Voir figure 4).

1°)	Déterminer la distance OG en fonction de l	'.G est le centre d'inertie du s	ystème.	(1,0 pt)
	Determiner la distance du en fonction de c	ou est le centre u mertie uu s	Stelle.	ger.

2°) Montrer que le moment d'inertie de ce système par rapport à (Δ) est $J_{\Delta}=8\,\text{m}\ell^2$. (0,5 pt)

3°) On écarte ce pendule composé d'un angle petit α₀ de sa position d'équilibre verticale, puis on l'abandonne sans vitesse.

a - Etablir l'équation différentielle du mouvement. (1,0 pt)

b — Calculer la longueur ℓ_1 du pendule simple synchrone de ce pendule composé. (0,5 pt)

AN : ℓ = 30 cm

Je cherche ma propre solution avant de consulter la correction

Quelques réponses

partie I 1°-en O₂:Vs=3,3m.s⁻¹;

 2° -a/ ω =3,4rad. s⁻¹ et b/ T=2,3N

partie II 1°-OG=5L/4

2°-J_{syst}=8m.L².

3°-**L₁=48cm**

Correction détaillée dans le document « bis »