

Fonctions avec valeurs absolues: exercices

Exercice 1

Soit f la fonction numérique définie par f(x) = x|x-2|

On note (C) sa courbe représentative dans le repère orthonormé R(O,i,j)

- 1°) Déterminer l'ensemble de définition de f
- 2°) Ecrire f(x) sans le symbole de la valeur absolue
- 3°) a) Etudier la continuité et la dérivabilité de f en 2
 - b) Donner alors l'équation de la tangente ou des demi-tangentes à (C) au point d'abscisse 2
- 4°) a) Exprimer f'(x), fonction dérivée de f, puis étudier son signe
 - b) Dresser alors le tableau des variations de f
- 5°) Représenter graphiquement f avec toutes les droites ou demi-droites demandées.

Exercice 2

Soit f la fonction numérique définie par $f(x) = \frac{|x+1|(x-3)}{x-1}$

On note (C) sa courbe représentative dans le repère orthonormé R(O,i,j)

- 1°) Déterminer l'ensemble de définition de f
- 2°) Ecrire f(x) sans le symbole de la valeur absolue
- 3°) a) Etudier la continuité et la dérivabilité de f en -1
 - b) Donner alors l'équation de la tangente ou des demi-tangentes à (C) au point d'abscisse -1
- 4°) a) Exprimer f'(x), fonction dérivée de f, puis étudier son signe
 - b) Dresser alors le tableau des variations de f
- 5°) Vérifier que (C) admet une asymptote verticale (Δ) à préciser
- 6°) a) Trouver les réels a, b et c tels que pour tout x < -1, $f(x) = ax + b + \frac{c}{x-1}$
 - b) Que dire de la droite (D^-) : y = ax + b ?
- 7°) a) Trouver les réels α , β et λ tels que pour tout x > -1, $f(x) = \alpha x + \beta + \frac{\lambda}{x-1}$
 - b) Que dire de la droite (D^+) : $y = \alpha x + \beta$?
- 8°) Représenter graphiquement f avec toutes les droites et demi-droites demandées.