

Série A - session 2009 : exercice 1 - corrigé

1- a) Valeurs exactes de U_0 et U_2

On a
$$U_0 = e^0 = 1$$
 et $U_2 = e^2$

b) Relation entre U_{n+1} et U_n

On a
$$U_{n+1} = e^{n+1} = e \times e^n$$
 D'où
$$U_{n+1} = e U_n$$

Nature de la suite (U_n) :

On a
$$\frac{U_{n+1}}{U_n} = e = cons \, tan \, te$$

Alors (U_n) est une suite géométrique de raison e.

Comme e >1, (U_n) est divergente.

2- a) Etude de la suite (V_n)

On a
$$V_n = \ln U_n = \ln e^n = n \ln e$$
.
D'où $V_n = n$

$$V_{n+1} - V_n = (n+1)-n = 1 = constante$$

Conclusion: (V_n) est une suite arithmétique de raison r = 1 et de premier terme $V_0 = 0$

b) Calcul de S

alors

d'où

La somme des termes consécutifs d'une suite arithmétique est :

$$V_{k} + V_{k+1} + ... + V_{n} = (n - k + 1) \frac{V_{k} + V_{n}}{2}$$

$$S = V_{0} + V_{1} + ... + V_{121} = (121 - 0 + 1) \frac{V_{0} + V_{121}}{2}$$

$$S = 7381.$$