


Série : Dérivée

Exercice 1

Dans le repère ci-contre est donnée la représentation graphique (C) de la fonction f.

On considère les points A, B,C de cette courbe d'abscisses respectives 0, 1, 2.

- 1) Placer ces points et donner leur coordonnées.
- 2) Calculer le taux de variation de f :
- a) entre 0 et 2.
- b) entre 1 et 2.

Exercice 2

On considère la fonction f définie par : $f(x) = \frac{6x+1}{x^2-x+2}$

- 1) Déterminer l'ensemble de définition de f.
- 2) a) Etablir l'égalité suivante : $\frac{f(1+h)-f(1)}{h} = \frac{7h-5}{2(h^2+h+2)}$
 - b) En déduire la valeur du nombre dérivée de f en 1.
- 3) Donner l'équation de la tangente (T) en 1.

Exercice 3

Déterminer L'expression de f'(x) si :

1)
$$f(x) = (3x - 2)(2x^2 + 1)$$
, $f(x) = (2x^2 + 3x)$ \sqrt{x} , 3) $f(x) = \frac{2 - 2x}{5x + 1}$, 4) $f(x) = \frac{1}{3x + 1}$

5)
$$f(x) = (2x-1)^3$$
, 6) $f(x) = \frac{x+1}{3x+1}$, 7) $f(x) = \frac{5x+1}{3-2x}$, 8) $f(x) = \frac{x^2+3x+1}{2x+1}$

Exercice 4

Le tableau suivant présente, pour chaque ligne, l'expression de f et de sa dérivée f'.

Vérifier l'exactitude de f'

Fonction	$\operatorname*{Image}_{x}\operatorname{de}$	Nombre dérivé en x
f	$x^3 - 5x^2 + x - 3$	$3x^2 - 10x + 1$
g	$\frac{2x-1}{x^2+x}$	$-\frac{2x^2 - 2x - 1}{x^2 \cdot (x+1)^2}$
h	$(x^2-3)\cdot\sqrt{x}$	$\frac{5x^2 - 3}{2 \cdot \sqrt{x}}$
j	$\frac{3x-2}{2-x}$	$\frac{4}{(x-2)^2}$

Exercice 5

On souhaite déterminer les expressions des dérivées des fonctions suivantes :

$$f(x) = (3x^2 + 3x)(2x + 2)$$
; $g(x) = (2x^2 + 1)$ \sqrt{x} ; $h(x) = \frac{1}{x}(3 - x^2)$; $j(x) = \frac{2}{x}\sqrt{x}$. Ces fonctions sont

de la forme u•v. Compléter le tableau ci-dessous afin d'identifier les deux facteurs de ce produit et leur dérivée respective, puis calculer les dérivées de ces fonctions.

	u(x)	v(x)	u'(x)	v'(x)
f(x)				
g(x)				
h(x)				
j(x)				

Exercice 6

On souhaite déterminer les expressions des dérivées des fonctions suivantes :

Auteur : Equipe de maths

$$f(x) = \frac{3-2x}{x+1}$$
; $g(x) = \frac{x^2+4x-1}{2x-1}$; $h(x) = \frac{3}{2-x}$; $j(x) = \frac{\sqrt{x}}{x+1}$

Ces fonctions sont de la forme $\frac{u}{v}$. Compléter le tableau ci-dessous afin d'identifier les deux facteurs de ce produit et leur dérivée respective, puis calculer les dérivées de ces fonctions.

	u(x)	v(x)	u'(x)	v'(x)
f(x)				
g(x)				
h(x)				
j(x)				